Beamline 4-ID / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques and use of polarized x-rays

Scientific programs: Development of polarization optics/techniques for 0.5–100 keV (magnetic circular dichroism, resonant magnetic scattering, and fluorescence), and development of high-heat-load frontend components.

Optics & Optical Performance

Hard x-ray branch optics and optics performance

• double-crystal monochromator

3.0–45.0 keV energy range Si(111) 5 mm hor. x 2 mm vert. acceptance 1°–60° Bragg angle rotation range 10 arcsec Bragg accuracy 0.5 arcsec resolution 10–35 mm beam offset, variable liquid-nitrogen cooling

• mirror

two groove, torroidal figure 80.5 mm sagittal radius, focusing 345 mm sagittal radius, collimating 18–7 km meridional radius, adjustable 800 mm L x 30 mm W 1.5–3.85 mrad angular range

• mirror

flat

1.5-3.85 mrad angular range

Intermediate x-ray branch optics and optics performance

 horizontal focusing mirror M1C 28.6 m from source 1.1° incident angle plane figure Pt, Rh, Si

• horizontal focusing mirror M2C

31 m from source 1.1° incident angle spherical figure (R=1610 m) Pt, Rh, Si

• vertical focusing mirror M3C

41.4 m from source 1.00° incident angle spherical figure Rh coating • spherical grating monochromator

50 m from source

0.5–3.0 keV energy range $10^{\text{-}3}\text{--}10^{\text{-}4}$ monochromaticity $\Delta E/E$ 2.5 mm hor. x 0.25 mm vert. beam size $10^{11}\text{--}10^{13}$ ph/sec flux at sample

Experiment Stations

4-ID-A

• white beam first optic enclosure

4-ID-B and -D

- white and monochromatic "hard" x-ray
- stations

4-ID-C

• intermediate x-ray station

Beamline Controls and Data Acquisition

• Sun UNIX running Epics with VME, SPEC

Beamline 4-ID / SRI-CAT

Scientific focus: Synchrotron instrumentation and techniques and use of polarized x-rays

Scientific programs: Development of polarization optics/techniques for 0.5–100 keV (magnetic circular dichroism, resonant magnetic scattering, and fluorescence), and development of high-heat-load frontend components.

Circularly Polarized Undulator (nominal)*

period	12.8 cm
length	2.3 m
effective K _{mx} (for both horizontal and vertical fields)	2.65
peak field B _{max}	0.28 Tesla
	1.4 kA horizontal 0.32 kA vertical
energy range 1st harmonic (helical mode)	0.44 - 3.0 keV
energy range 1st harmonic (linear mode)	0.8 - 3.0 keV
energy range 1st - 5th harmonics (linear mode)	0.8 - 10.0 keV
on-axis peak circular brilliance at 1.5 keV	1.0 x 10 ¹⁸ ph/sec/mrad ² /mm ² /0.1%bw
on-axis peak linear brilliance at 1.9 keV	7.0 x 10 ¹⁷ ph/sec/mrad ⁴ /mm ² /0.1%bw
source size at 1.5 keV $\sum_{x} \sum_{y}$	$359\mu\mathrm{rad}$ $21\mu\mathrm{rad}$
source divergence at 1.5 keV $\sum_{x'} \sum_{y'}$	$27~\mu\mathrm{rad}$ $14.7~\mu\mathrm{rad}$

Insertion Device Source Characteristics (nominal)*

source	Undulator A
period	3.30 cm
length	2.47 m
effective K_{max} (at minimum gap = 10.5 mm)	2.78
energy range 1st harmonic	2.9 - 13.0 keV
energy range 1st - 5th harmonics	2.9 - 45.0 keV
on-axis peak brilliance at 6.5 keV	9.6 x 10 ¹⁸ ph/sec/mrad4mm40.1% bw
source size at 8.0 keV $\sum_{y}^{x} \sum_{y}^{x}$	$359~\mu\mathrm{m}$ $21~\mu\mathrm{m}$
source divergence at 8.0 keV $\sum_{x'}_{y'}$	$24~\mu\mathrm{rad}$ $6.9~\mu\mathrm{rad}$

^{*} Sector 4 will be equipped with two canted insertion devices, a standard Undulator A and an elliptically polarized undulator.